Gotistobart In Combination With Pembrolizumab In Patients With Advanced Melanoma Who Have Progressed On PD-1 Inhibitors With Or Without CTLA-4 Inhibitors

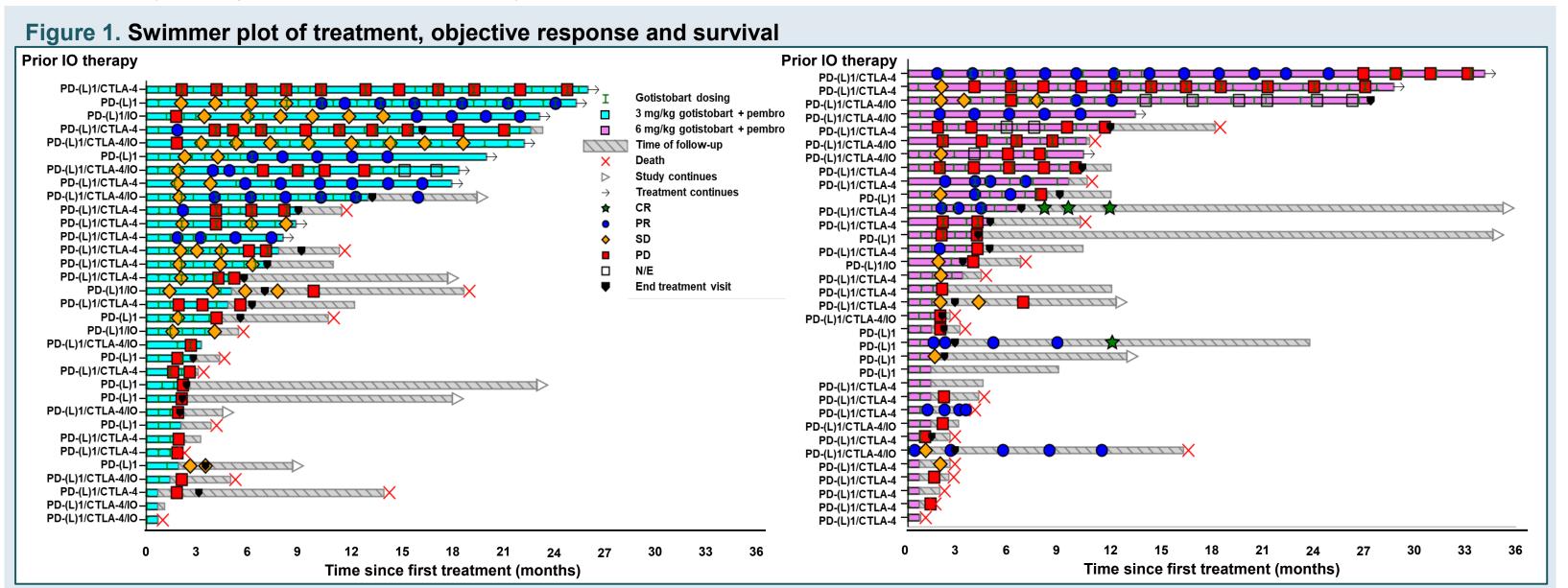
Siwen Hu-Lieskovan¹, Kari Kendra², Kai He², Bently Doonan³, Eric Schaefer⁴, Edward Arrowsmith⁵, Ki Chung⁶, Eric Whitman⁷, Ulka Vaishampayan⁸, Svetlana Shpyro⁹, Qiong Wang⁹, Juanjuan Su¹⁰, Chris Leung¹⁰, Kazuharu Kai¹⁰, Yang Liu¹⁰, Pan Zheng¹⁰, Tianhong Li¹¹

¹Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United states; ²Ohio State University of Florida Division of Hematology & Oncology, FL, United States; ⁴Highlands Oncology Group, Fayetteville, AR, United States; ⁵Tennessee Oncology, Chattanooga, TN, United States; ⁶Prisma Health Cancer Institute, Greenville, SC, United States; ⁷Atlantic Health System, Morristown Medical Center, MI, United States; ⁹BioNTech SE, Mainz, Germany; ¹⁰OncoC4 Inc., Rockville, MD, United States; ¹¹UC Davis Comprehensive Cancer Center, Sacramento, CA, United States

Background

- Approximately 50% of patients with non-resectable metastatic melanoma achieve long-term disease control using ipilimumab in combination with nivolumab. However, around 40% of patients do not respond to treatment, and prognosis is poor for those who are refractory or progress.¹
- Gotistobart is a pH-sensitive CTLA-4-preserving antibody designed to dissociate from CTLA-4 in endosomes, thus avoiding antibody-induced lysosomal degradation and allowing normal recycling of both CTLA-4 and gotistobart.²⁻⁵
- We hypothesized that gotistobart in combination with pembrolizumab could improve outcomes of patients who previously progressed on anti-PD-1 mAb ± anti-CTLA-4 mAb. We also aimed to evaluate differences in efficacy and safety between gotistobart 3 mg/kg Q3W vs 6 mg/kg while combining with pembrolizumab 200 mg Q3W.

Study design and objectives

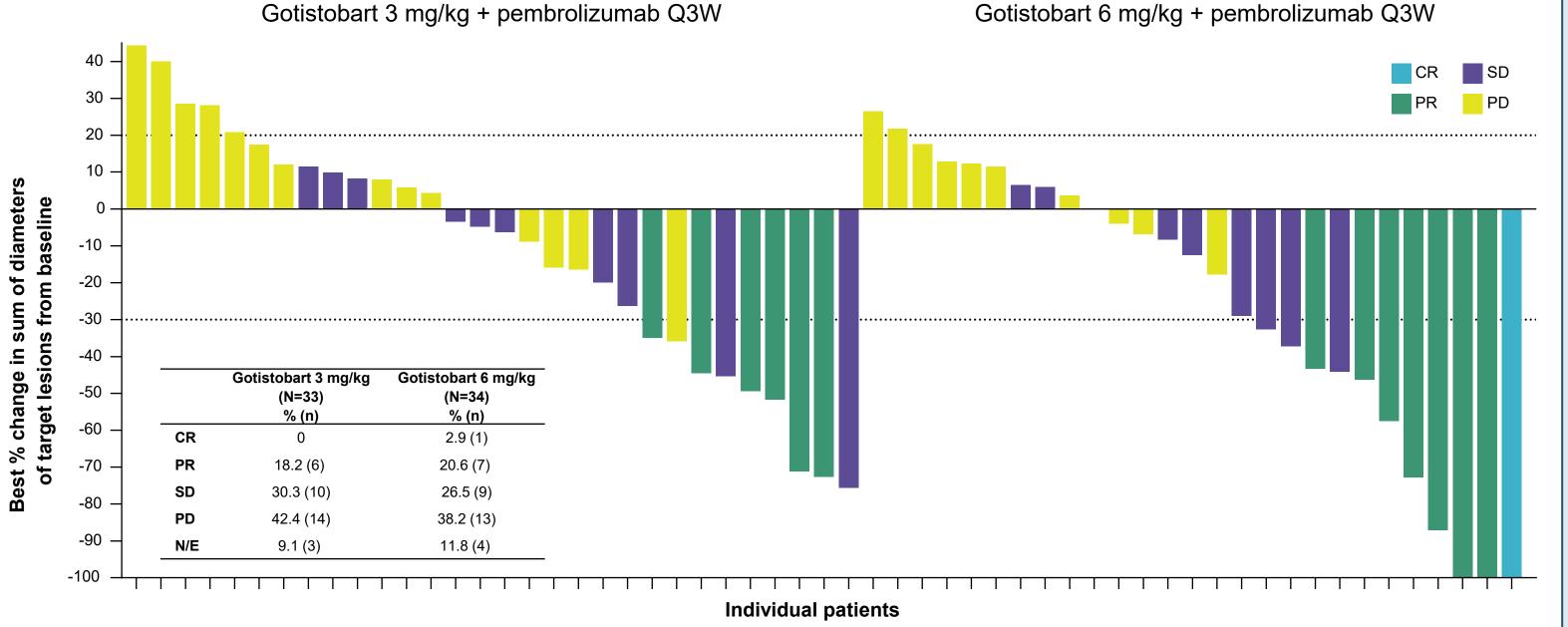

- PRESERVE-001 (NCT04140526) is an open label, phase 1/2 study that is evaluating safety and efficacy of gotistobart as a single agent and in combination with pembrolizumab in patients with advanced or metastatic solid tumors. 6,7
- Here we present safety and efficacy results from 67 patients with advanced/metastatic melanoma who were refractory to/relapsed on immunotherapy, including ipilimumab and nivolumab, and were treated with either 3 mg/kg or 6 mg/kg gotistobart plus 200 mg of pembrolizumab, Q3W (PRESERVE-001 Part B [melanoma patients only] and Part C Arms G and G2).
- Primary endpoints: ORR by investigator assessment in accordance with RECIST 1.1 and incidence of TRAEs
- Secondary endpoints: DoR, BoR and DCR
- **Exploratory endpoints:** Included PFS by investigator assessment in accordance with RECIST 1.1 and iRECIST, OS, and an ad-hoc analysis of next-treatment free survival (NTFS; next treatment was identified as initiation of a new anti-neoplastic agent)

Patient characteristics

Table 1. Baseline patient and disease characteristics				
Baseline characteristics	Gotistobart 3 mg/kg + pembro (n=33)	Gotistobart 6 mg/kg + pembro (n=34)		
Median age, years (range)	62 (29–83)	66 (24–81)		
Gender, n (%)				
Female	12 (36%)	12 (35%)		
Male	21 (64%)	22 (65%)		
Race, n (%)				
White	29 (88%)	31 (91%)		
Black	0	1 (3%)		
Asian	1 (3%)	0		
Other	3 (9%)	2 (6%)		
ECOG score, n (%)				
0	15 (45%)	18 (53%)		
1	18 (55%)	16 (47%)		
Baseline tumor burden >10cm	11 (33%)	9 (26%)		
BRAF mutant, n (%)	11 (33%) 17 (50%)			
Median number of prior regimens (range)	3 (1–7) 2 (1–14)			
Prior treatment with PD-(L)1	33 (100%) 34 (100%)			
Prior treatment with CTLA-4	22 (67%) 27 (79%)			
Prior treatment with ipilimumab and nivolumab	22 (67%)	23 (68%)		

Clinical activity

- At data cut off (March 28, 2025), median follow-up associated with OS was 16.3 and 12.9 months, for gotistobart 3 mg/kg and 6 mg/kg groups, respectively.
- Treatment beyond progression was allowed at the physician's discretion.


N/E, non-evaluable: patients were missing post-baseline scan

■ Confirmed ORR (cORR) was 18.2% (6/33) and 23.5% (8/34), in gotistobart 3 mg/kg and 6 mg/kg groups, respectively.

Figure 2. Waterfall plot of best percent change from baseline in target lesion size with confirmed BoR

- Of patients who had prior ipilimumab and nivolumab, cORR was 18.2% (4/22) and 21.7% (5/23), respectively.
- Efficacy was noted regardless of BRAF mutation status (cORR wild type: 13.6% [3/22] and 29.4% [5/17], in gotistobart 3 mg/kg and 6 mg/kg groups, respectively vs cORR in patients with BRAF mutations: 27.3% [3/11] and 17.7% [3/17], respectively).
- NTFS rates at 12 months were 47.2% (95% CI 28.0–64.3) and 32.6% (95% CI 16.6–49.5), respectively.
- OS rates at 24 months were 51.1% (95% CI 28.4–69.9) and 37.4% (17.3–57.6), respectively.

Safety

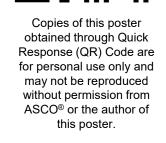
Table 2. Adverse events

	Gotistobart 3 mg/kg + pembro	Gotistobart 6 mg/kg + pembro	Overall
	n=33)	(n=34)	(N=67)
Any TRAEs, n (%)	29 (87.9)	30 (88.2)	59 (88.1)
TRAEs of grades ≥3, n (%)	17 (51.5)	21 (61.8)	38 (56.7)
≥5% incidence:			
Colitis	4 (12.1)	7 (20.6)	11 (16.4)
Diarrhea	4 (12.1)	6 (17.6)	10 (14.9)
AST increased	3 (9.1)	3 (8.8)	6 (9.0)
ALT increased	3 (9.1)	2 (5.9)	5 (7.5)
Immune-mediated enterocolitis	2 (6.1)	2 (5.9)	4 (6.0)
Adrenal insufficiency	2 (6.1)	1 (2.9)	3 (4.5)
Cytokine release syndrome	0	2 (5.9)	2 (3.0)
TRAEs of grade 5, n (%)	0	1 (2.9)	1 (1.5)
Any serious TRAEs, n (%)	14 (42.4)	17 (50.0)	31 (46.3)
TRAEs leading to treatment discontinuation, n (%)	1 (3.0)	7 (20.6)	8 (11.9)

- Grade ≥3 TRAEs were observed in 51.5% and 61.8% of patients in the gotistobart 3 mg/kg and 6 mg/kg groups, respectively.
- Colitis/diarrhea or AST/ALT increase were the most common grade ≥3 TRAEs.
- TRAEs leading to study drug discontinuation were observed in 3.0% and 20.6% of patients in the gotistobart 3 mg/kg and 6 mg/kg groups, respectively.
- One patient in the gotistobart 6 mg/kg group died due to immune-mediated enterocolitis.

Conclusions

- To our knowledge, this is one of the largest cohorts studied in patients with advanced melanoma refractory or relapsed on prior anti-PD-1 ± anti-CTLA-4 therapy (including prior ipilimumab and nivolumab treatment).
- Gotistobart at 3 mg/kg combined with 200 mg pembrolizumab Q3W was associated with ORR comparable to that achieved with 6 mg/kg dosing, with favourable tolerability observed at the 3 mg/kg dose.
- Durable clinical benefit was observed with 3 mg/kg gotistobart plus 200 mg pembrolizumab; nearly half of the patients were free from additional systemic anticancer treatment at 1 year, and 2-year survival rate was >50%.


References

1. Wolchok JD. et al. N Engl J Med. 2024;392(1):11–22; 2. Zhang Y. et al. Cell Res. 2019:29(8) 609-627; 3. Kai H. et al. J Clin Oncol. 2023:41(suppl16: abstract 9024); 4. Liu Y, Zheng P. Trends in Pharmacol Sci. 2020: 41(1) 4-12; 5. Du K et al. Cell Res. 2018:28(4) 433-447; 6. Li T, et al. Journal for Immuno Therapy of Cancer 2021;9 doi: 10.1136/jitc-2021-SITC2021.949; 7. Hu-Lieskovan S. et al. Journal for Immuno Therapy of Cancer 2022;10:doi: 10.1136/jitc-2022-SITC2022.0594

Acknowledgments

investigators at each participating institution. Gotistobart is being jointly developed by OncoC4 and BioNTech SE. Stephen Georgiou (of BioNTech) provided writing and editorial assistance, funded by BioNTech in accordance with Good Publication Practice (GPP) 2022 guidelines (http://www.ismpp.org/gpp-2022). The combination dose escalation phase was partially supported by SBIR grant R44CA250884 to PZ, KH and TL from National Cancer

Trial registration: NCT04140526

ALT, alanine aminotransferase; AST, aspartate aminotransferase; BoR, best overall response; BRAF, B-Raf proto-oncogene; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; DCR, disease control rate; DoR, duration of response; BRAF, B-Raf proto-oncogene; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; DCR, disease control rate; DoR, duration of response; BRAF, B-Raf proto-oncogene; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; DCR, disease control rate; DoR, duration of response; BRAF, B-Raf proto-oncogene; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; DCR, disease control rate; DoR, duration of response; BRAF, B-Raf proto-oncogene; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; DCR, disease control rate; DoR, duration of response; BRAF, B-Raf proto-oncogene; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; DCR, disease control rate; DoR, duration of response; BRAF, B-Raf proto-oncogene; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; DCR, disease control rate; DoR, duration of response; BRAF, B-Raf proto-oncogene; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; DCR, disease control rate; DoR, duration of response; BRAF, B-Raf proto-oncogene; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; DCR, disease control rate; DCR, disea ORR, objective response rate; OS, overall survival; PD, progressive disease; PD-1, progressive disease; PD-1, progression-free survival; PR, partial response; Q3W, every three weeks; SBIR, Small Business Innovation Research; SD, stable disease; TRAEs, treatment-related adverse events.

N/E, non-evaluable: patients were missing post-baseline scan